Kaiser Window Transform

​
window length
27
DFT length
512
Kaiser window parameter
5
This Demonstration investigates the frequency-domain properties of the Kaiser window, a useful tool in signal processing.

Details

The Kaiser window is defined by the formula:
w
k
=
I
0
β
1-
2

2k
N
-1
I
0
(β)
0≤k≤N
0
otherwise
The Fourier transform of the Kaiser window
w
k
(t)
(where
t
is treated as continuous) is:
W(ω)=
M
I
0
(β)
sinh
2
β
-
2

Mω
2

2
β
-
2

Mω
2

where
I
0
is the modified Bessel function of the first kind of zero order.

External Links

The Kaiser Window (Wolfram Library Archive)

Permanent Citation

Jeff Bryant, Julius O. Smith, Faisal Mohamed
​
​"Kaiser Window Transform"​
​http://demonstrations.wolfram.com/KaiserWindowTransform/​
​Wolfram Demonstrations Project​
​Published: September 28, 2007