Factoring Gaussian Integers

​
10i+18(7-2i)(-i)
3
(i+1)
Every nonzero Gaussian integer
a+bi
, where
a
and
b
are ordinary integers and
i=
-1
,
can be expressed uniquely as the product of a unit and powers of special Gaussian primes. Units are 1,
i
, -1,
-i
. Special Gaussian primes are
1+i
and primes
z
with
Re(z)>0
and
Re(z)>|Im(z)|
.

Details

J. H. Conway and R. K. Guy, The Book of Numbers, New York: Copernicus Books/Springer, 2006 pp. 217–220.

External Links

Gaussian Integer (Wolfram MathWorld)
Gaussian Prime (Wolfram MathWorld)

Permanent Citation

Izidor Hafner
​
​"Factoring Gaussian Integers"​
​http://demonstrations.wolfram.com/FactoringGaussianIntegers/​
​Wolfram Demonstrations Project​
​Published: March 7, 2011