PolyLog Function

​
a
0.5
b
25.
b
0
0.86
f
Re
Im
Abs
Arg
view
2D
density
3D
The polylogarithm function (or Jonquière's function)
Li
s
(z)
of index
s
and argument
z
is a special function, defined in the complex plane for
|z|<1
and by analytic continuation otherwise. It can be plotted for complex values
s=a+bi
; for example, along the celebrated critical line
s=1/2+bi
for Riemann's zeta function[1]. The polylogarithm function appears in the Fermi–Dirac and Bose–Einstein distributions and also in quantum electrodynamics calculations for Feynman diagrams. The 2D plot shows the function
x⟶f(
Li
a+bi
(x+
b
0
i))
, and the 3D plot shows
(x,y)⟶f(
Li
a+bi
(x+yi))
.

Details

The polylogarithm function is defined as
Li
s
(z)=
∞
∑
k=1
k
z
s
k
.
For
s=1
, it is equivalent to the natural logarithm,
Li
1
(z)=ln(1-z)
. For
s=2
and
s=3
, it is called the dilogarithm and the trilogarithm; the integral of a polylogarithm is itself a polylogarithm
Li
s+1
(z)=
z
∫
0
Li
s
(t)
t
dt
.

References

[1] L. Vepstas. "Polylogarithm, The Movie." (Nov 20, 2014) linas.org/art-gallery/polylog/polylog.html.
[2] T. M. Apostol. "Zeta and Related Functions." NIST Digital Library of Mathematical Functions, Version 1.0.9, Release date 2014-08-29. dlmf.nist.gov/25.12.
[3] Souichiro-Ikebe. "Polylogarithm Function." (Dec 4, 2015) Graphics Library of Special Functions (in Japanese). http://math-functions-1.watson.jp/sub1_spec_040.html.

External Links

Dilogarithm (Wolfram MathWorld)
Trilogarithm (Wolfram MathWorld)
Polylogarithm (Wolfram MathWorld)
PolyLog (The Wolfram Functions Site)

Permanent Citation

Enrique Zeleny
​
​"PolyLog Function"​
​http://demonstrations.wolfram.com/PolyLogFunction/​
​Wolfram Demonstrations Project​
​Published: November 24, 2014