n=2023;numberOfVars=9;(*Generatelistofdivisorsofnandremove1fromdivisorlist(the\firstelement)*)divs=Divisors[n]//Rest;(*generatelistofdivisionpowersofeachdivisor*)divPowers=IntegerExponent[n,divs];(*repeatdivisorsthathavemultiplepowerdivisibilityofn*)repeatedDivisorList=ParallelTable[ConstantArray[divs[[i]],divPowers[[i]]],{i,Length[divs]}]//Flatten;(*generateprimefactorization*)primeFac=FactorInteger[n];(*themaxnumberofnon-1productsina*b*c*d*e*...=nisthesumof\primepowersinitsprimefactorization,asyoucan'tsplitnumbers\downanymoreafterprimes*)maxFactors=Total[primeFac[[All,2]]];(*getuniquesubsetsofdivisorsuptomaximumlengthmaxFactors*)subsets=ParallelArray[Subsets[repeatedDivisorList,{#}]&,maxFactors];subsets=DeleteDuplicates[Flatten[subsets,1]];(*calculateproductforeachuniquesubset*)candiateProducts=Parallelize[Times@@@subsets];(*selectpositionofcandidateswithaproductofn*)productsSatisified=Flatten[Position[candiateProducts,n]];(*generatelistoffactorsthatmultiplyton*)productsList=ParallelTable[subsets[[i]],{i,productsSatisified}];(*makeallthelistslengthnumberOfVarssincewe'relookingfor\a*b*...*i==nbypaddingonesonthem*)productsList=ParallelMap[PadLeft[#,numberOfVars,1]&,productsList];(*calculatesumsofeachfactorization*)sumsList=Parallelize[Plus@@@productsList];(*selectpositionsthatsumton*)solnsPos=Flatten[Position[sumsList,n]];solns=Flatten[productsList[[solnsPos]]]