Trigonometric Integral Functions

​
3D plot
contour plot
real part
imaginary part
absolute value
function
Chi(z)
Ci(z)
Shi(z)
Si(z)
Ei(z)
The trigonometric integrals are special functions defined as
Chi(z)=γ+
z
∫
0
cosh(t)-1
t
t+log(z)
,
Ci(z)=γ+
z
∫
0
cos(t)-1
t
t+log(z)
,
Shi(z)=
z
∫
0
sinh(t)
t
t
,
Si(z)=
z
∫
0
sin(t)
t
t
,
Ei(z)=-
∞
∫
-z
-t

t
t
. As functions of a complex variable, they can be visualized by plotting their real part, imaginary part, or absolute value.

External Links

Cosine Integral (Wolfram MathWorld)
Sine Integral (Wolfram MathWorld)
Shi (Wolfram MathWorld)
Chi (Wolfram MathWorld)
Exponential Integral (Wolfram MathWorld)

Permanent Citation

Rob Morris
​
​"Trigonometric Integral Functions"​
​http://demonstrations.wolfram.com/TrigonometricIntegralFunctions/​
​Wolfram Demonstrations Project​
​Published: September 28, 2007