WOLFRAM|DEMONSTRATIONS PROJECT

Simple Harmonic Motion for a Spring

​
time
0
amplitude
2
spring constant
3
mass
2
phase
0
Plot0.01SinIfFE`t$$3280960441358329860673605465073917743987<
π
FE`k$$3280960441358329860673605465073917743987
FE`m$$3280960441358329860673605465073917743987
,FE`t$$3280960441358329860673605465073917743987+1,
2π
FE`k$$3280960441358329860673605465073917743987
FE`m$$3280960441358329860673605465073917743987
-FE`t$$3280960441358329860673605465073917743987+115x+
π
2
,{x,-0.25,x[FE`ϕ$$3280960441358329860673605465073917743987,FE`t$$3280960441358329860673605465073917743987,FE`A$$3280960441358329860673605465073917743987,FE`k$$3280960441358329860673605465073917743987,FE`m$$3280960441358329860673605465073917743987]+FE`A$$3280960441358329860673605465073917743987},PlotStyle{Thickness[0.005FE`k$$3280960441358329860673605465073917743987]},Epilog{Black,Rectangle[{-0.5,-0.1},{-0.25,0.1}],Red,PointSize[0.03FE`m$$3280960441358329860673605465073917743987],Point[{x[FE`ϕ$$3280960441358329860673605465073917743987,FE`t$$3280960441358329860673605465073917743987,FE`A$$3280960441358329860673605465073917743987,FE`k$$3280960441358329860673605465073917743987,FE`m$$3280960441358329860673605465073917743987]+FE`A$$3280960441358329860673605465073917743987,0}],Dashed,Thin,Line[{{-0.25,0},{5,0}}],PointSize[0.01],Green,Thick,Line[{{0,-0.3},{0,0.3}}],Yellow,Line[{{FE`A$$3280960441358329860673605465073917743987,-0.3},{FE`A$$3280960441358329860673605465073917743987,0.3}}],Green,Line[{{2FE`A$$3280960441358329860673605465073917743987,-0.3},{2FE`A$$3280960441358329860673605465073917743987,0.3}}]},PlotRange{{-0.5,5},{-0.1,0.1}},Axes{True,False},AspectRatio
1
6
,ImageSize500
kinetic energy =
0
position =
2
potential energy =
6.00
velocity =
0
total energy =
6.00
acceleration =
-3
This Demonstration shows the relation of position, velocity, acceleration, potential energy, and kinetic energy with the different parameters that can be set for a harmonically oscillating system.